RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [2017-20]

B.A./B.Sc. FIRST SEMESTER (July – December) 2017 Mid-Semester Examination, September 2017

Date: 15/09/2017 MATHEMATICS (General)

Time: 12 noon – 1 pm Paper: I Full Marks: 25

[Use a separate Answer Book for each group]

Group - A

Answer **any one** of **Question No. 1 & 2**:

 $[1\times4]$

- 1. a) If z_1 , z_2 are complex numbers such that $|z_1 5z_2| = |5 z_1\overline{z_2}|$ and $|z_2| \neq 1$, prove that $|z_1| = 5$. [2]
 - b) Find the principal value of $(1+i)^{i}$. [2]
- 2. a) Using De Moivre's theorem prove that $\tan 4\theta = \frac{4 \tan \theta 4 \tan^3 \theta}{1 6 \tan^2 \theta + \tan^4 \theta}$. [2]
 - b) Find all the values of z such that cos(z-1) = 0. [2]
- 3. Answer **any one** of the following:

 $[1\times4]$

- a) Prove that $\begin{vmatrix} x+1 & 2 & 2 \\ 2 & x+1 & 2 \\ 2 & 2 & x+1 \end{vmatrix} = (x-1)^2(x+5)$.
- b) Prove that $\begin{vmatrix} a^3 + 1 & a^2 + 2 & 1 \\ b^3 + 1 & b^2 + 2 & 1 \\ c^3 + 1 & c^2 + 2 & 1 \end{vmatrix} = \begin{vmatrix} a^2 & a & bc \\ b^2 & b & ca \\ c^2 & c & ab \end{vmatrix}.$

<u>Group – B</u>

4. Answer **any two** of the following:

 $[2\times4]$

- a) Let A, B, C be subsets of a universal set S. Prove that $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.
- b) Define a relation ρ on \mathbb{Z} by setting "a ρ b iff (a b) is divisible by 3". Check if ρ is an equivalence relation.
- c) Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 3x + 2. Show that f is invertible. Find f^{-1} .
- d) Let $f: A \to B$, $g: B \to C$ be surjective maps. Show that gof: $A \to C$ is surjective.

Group - C

4. Check whether $\sqrt{5}$ is a rational or not.

[2×3]

[3]

- 5. Answer <u>any two</u> of the following:
 - a) Using $\in -\delta$ definition find $\lim_{x \to \infty} \frac{\sin x}{x}$.

b) A function f is defined by

$$\begin{array}{lll} f(x) & = & -x & \text{when } x \leq 0 \\ & = & x & \text{when } 0 < x < 1 \\ & = & 2 - x & \text{when } x \geq 1 \end{array}$$

Show that f is continuous at x = 0 and x = 1.

c) $f(x) = \frac{x^2 - 16}{x - 4}$. What value must be assigned to f(4), if f(x) is to be continuous at x = 4.

